If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+2x-300=0
a = 4.9; b = 2; c = -300;
Δ = b2-4ac
Δ = 22-4·4.9·(-300)
Δ = 5884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5884}=\sqrt{4*1471}=\sqrt{4}*\sqrt{1471}=2\sqrt{1471}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1471}}{2*4.9}=\frac{-2-2\sqrt{1471}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1471}}{2*4.9}=\frac{-2+2\sqrt{1471}}{9.8} $
| 1/2x+9=-7 | | 4.9x^2+13x-300=0 | | 4w-w+28=3+4 | | 4.9x^2+13x+300=0 | | 6x-12=-13x+1 | | 3n-10=3n | | 6x-2=12x-3+7+13x | | 3/y=3 | | 5/s=2 | | 3b+5=30 | | -3(3x+15)-(-30+-3x)=35 | | 5+3b=30 | | -x=2=-1 | | 4/r=1 | | x-(6+8)=6 | | 7x-4+x=-1+13x7 | | 7a-(-8+4a)=-4 | | 7a-(-8=4a)=-4 | | 7u+9-10u=-8 | | (2w+5)(w)=25 | | c-2(c-2)=8 | | 12x-15=3(4x-6) | | W=32-0.05n | | 0,5=0,5x-3,5 | | 90+x+x-20=180 | | 4×+3y=-15 | | Y=7x-8. | | 60+4y=200 | | -20n+15n=10 | | 60+t4=200 | | Y=7x-8.Y=5x-2 | | 6p+2=2+6p |